

New Release

LTEC Corporation

Your most experienced partner in IP protection

SiC MOSFETs (1200V): Survey and Benchmark Report (2025 Edition)

Background

In the past few years there have been significant announcements and activity in the SiC industry:

- Leading SiC device manufacturers have transitioned to Gen 4 technology, with specific onresistance per unit area (RONxA) dropping below 200mΩ·mm².
- As SiC wafer manufacturing expands and manufacturing yields improve, the price of SiC wafers has fallen significantly.
- Chinese SiC wafer manufacturers (e.g. Tankeblue, SICC, etc.) are actively attracting device manufacturers by offering high volume production and low-cost wafers (e.g. Tankeblue-Infineon, etc.).

Based on these circumstances and information, we are preparing to release the latest SiC MOSFET technology survey and benchmark report for 2025. The main purpose is to track the technological evolution of the global SiC MOSFET industry and its current status and prospects.

Report contents (174 pages) See Table of Contents on Page 2, 3, 4:

The technology trends and evolution analysis of SiC transistors is based on data from close to 60 products analyzed by LTEC since 2014, including data from the first generation to the latest fourth generation from major SiC device manufacturers.

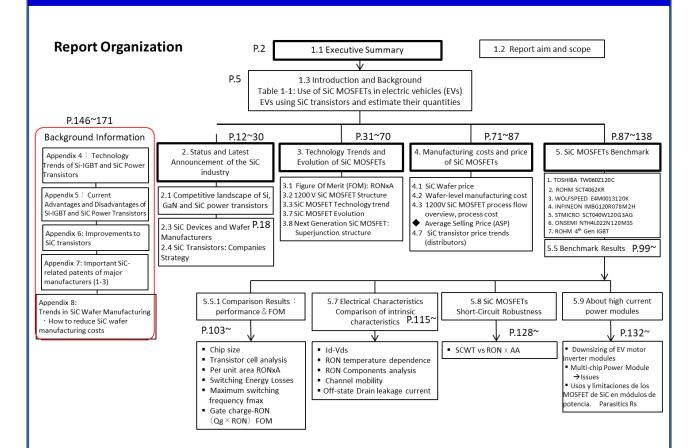
STMicro, INFINEON, Wolfspeed, ROHM, TOSHIBA, ONSEMI, NEXPERIA/Mitsubishi, DENSO, BOSCH (Refer to P.6)

Questions addressed in this report:

- Top suppliers of SiC wafers and leading SiC transistor manufacturers
- Technology evolution and performance improvement trends in SiC transistors
 Reducing transistor cell pitch size or improving transistor performance?
 Technology trends and new announcements? (→ SuperJunction)
- ✓ New limits for very low RON (≤10mΩ) transistors ★
- ✓ New SiC wafer (⇒Bonded SiC, PolySiC substrate)
- ✓ Consideration of SiC raw wafer prices and SiC device processed wafer costs (PWC)
- ✓ Are SiC MOSFETs getting cheaper? Trend towards lower ASPs (average selling prices)?
- ✓ What is the cost/price ratio between SiC-based transistors and Si-based transistors? Has it changed between 2018, 2022 and 2024-25?

Report price

Delivered one week after order placement. Please contact us for report pricing.


LTEC Corporation US Representative Office www.ltec-biz.com/en/ 2310 Homestead Rd, C1 #231 Los Altos, CA 94024

Phone: +1-(650) 382-1181 Contact2@ltec.biz

Report No : 24G-0876-1 Release day: 2025.02.19

Your most experienced partner in IP protection

Introduction: Objective and Scope of this Report

The objective of this report is to investigate the main technological advances in power SiC MOSFETs, predict their trends, possible obstacles, track pricing trends for SiC wafer supplies and estimate manufacturing costs.

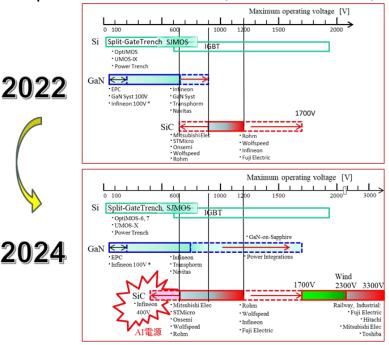
This report is not a market research report but rather summarizes current revenue forecasts and key manufacturers in the global SiC-based market based on publicly available information (sources are stated).

Your most experienced partner in IP protection

TABLE OF CONTENTS (1)

20	25 Ed	ition	Page
1	1.1	Executive Summary This report aim and scope	2 5
	1.3	Introduction, Background Table 1-1: Use of SiC MOSFETs in electric vehicles (EVs)	7 8
		EVs using SiC transistors and estimate their quantities	9
2		Current status Latest Announcement of the SiC industry	12
		Prospects for SiC transistors	13
	2.1	Competitive landscape of Si, GaN and SiC power transistors	13
	2.2	SiC market expansion. Al Servers Power Supplies	15
	2.3	SiC Devices and Wafer Manufacturers	18
		Table 2.3-3: Current status of SiC device and module manufacturers	19
	2.4	SiC Transistors: Companies Strategy	20
	2.5	Announcements from major SiC companies	22
3		Technology Trends and Evolution of SiC MOSFETs	31
	3.1	Power MOSFETs on-resistance Figure Of Merit (FOM): RONxA	34
	3.2	1200 V SiC MOSFETs Structure Analysis	35
	3.3	Technology Trends and Evolution of SiC MOSFETs of Leading Manufacturers	36
	3.4- 3.5	High voltage SiC MOSFET: epitaxial layer thickness and SiC-MOSFET breakdown voltage BVdss	43
	3.6	SiC MOSFET Epi-Buffer layer structure	46
	3.7	Evolution of SiC vertical MOSFET structures	50
		Planar Gate: WOLFSPEED 4 th Gen, STMicro 3 rd Gen, ONSEMI M3S	52
		Trench Gate: ROHM 4 th Gen, INFINEON 2 nd Gen CoolSiC, DENSO, BOSCH	56
	3.8	Next-generation SiC MOSFET: Superjunction structure	65
4		Manufacturing costs and price of SiC MOSFETs	71
	4.1	SiC Wafer Price	73
	4.2	Wafer-Level Manufacturing Costs: PWC (Processed Wafer Cost)	75
	4.3	1200V SiC MOSFET Process Flow Overview	76
	4.4	1200V SiC MOSFET Process Cost Overview	78
	4.5	Manufacturing cost: Expected/Forecast cost reduction	79
	4.6	Average Selling Price (ASP)	82
	4.7	SiC transistor price trends (distributors)	86
	4.8	Consideration and current status of SiC MOSFET: FOM and average selling price	87
5		SiC MOSFETs Benchmark	88
		TOSHIBA, 4 th Gen ROHM, Wolfspeed, INFINEON, STMICRO, Onsemi, ROHM IGBT-4	
	5.1	SiC MOSFET Reliability Concerns	90
	5.2	Table 5-1: 1200V SiC MOSFETs benchmark (2025)	91

Your most experienced partner in IP protection


TABLE OF CONTENTS (2)

2025 Edition					
5.3	Table 5-2: Structure of the evaluated 1200 V SiC MOSFET	92			
	Fig. 5.1-1 Typical breakdown voltage characteristics for SiC MOSFETs with specified maximum operating drain voltages (Vdss) ranging from 400V to 1700V.	94			
5.4	Evaluated Figures Of Merit (FOMs)	95			
5.5	SiC MOSFET Benchmark Results	99			
5.5.1	Comparison results: Performance & FOM	103			
5.6	On the Switching Energy Loss	105			
5.6.1	Packaging and its impact on switching energy	107			
	Summary of the comparison table results	114			
5.7	Electrical characteristics evaluation	115			
	Comparison of intrinsic electrical characteristics	117			
	Table 5.7-1: Summary of extracted (relative) channel carrier mobilities	119			
5.7.2	Device structure and electrical characteristics analysis: RON components analysis	120			
5.7.3	Electrical characteristics: Comparison of off-state drain leakage current	125			
5.8	SiC MOSFETs Short Circuit Robustness: SCWT vs. RON x AA	128			
5.9	About high current power modules	132			
	Table 5.9-1: Downsizing of EV motor inverter modules	133			
	Multi-chip Power Module	134			
	Other: Use and limitations of SiC MOSFETs in power modules.	137			
	Table 5.9-2: Miniaturization of xEV power modules and transistor parasitic resistance	138			
6	Summary and Conclusions	141			
7	References	144			
8	Appendixes	146			
	Appendix 1: Glossary of Terms Related to Power Transistors and Modules	147			
	Appendix 2:Relevant properties of semiconductor materials for power devices	148			
	Appendix 3: High Temperature Considerations in Power Electronic Devices	149			
	Appendix 4: Technology Trends of Si-IGBT and SiC Power Transistors	150			
	Appendix 5: Current Advantages and Disadvantages of Si-IGBT and SiC Power Transistors	151			
	Appendix 6: Improvements to SiC transistors	152			
	Appendix 7: Important SiC-related patents of major manufacturers (1-3)	153			
	Appendix 8: Trends in SiC Wafer Manufacturing	168			
	How to reduce SiC wafer manufacturing costs				
9	Revision History	174			

Your most experienced partner in IP protection

2 Prospects of SiC transistors 2.1 Competition between Si, GaN and SiC power transistors

Fig.2.X Evolution of high power WBG transistors.

- GaN expanding to Vdss> 1200V, and
- •SiC MOSFETs encroaching into Vdss~400V.

2 Prospects for SiC transistors

2.1 Competitive landscape of Si, GaN and SiC power transistors

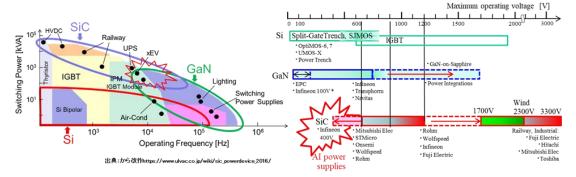


Fig.2.1: Competitive landscape of Si, GaN and SiC power transistors

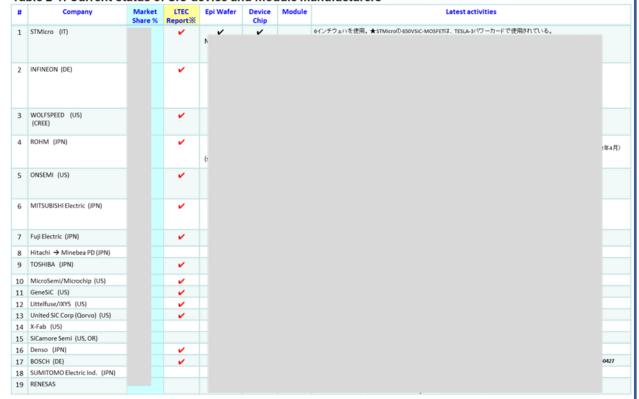
Fig.2.2: Current Voltage Application Areas for Si, GaN and SiC Power Transistors

In 2017, Transphorm introduced the world's first GaN HEMT operating at 900V, which competes directly with SiC MOSFETs. In the 650V zone, major manufacturers are introducing SiC MOSFETs (STMicro for Tesla-3 motor inverters). Major manufacturers are also offering SiC transistors for 1700V applications.

[·]On May 28, 2024, INFINEON announced the expansion of GaN and SiC for AI (artificial intelligence) power supplies: New 400V CoolSiC MOSFET

[·] A major AC adapter manufacturer (Power Integrations, PI) introduced a flyback converter (InnoSwitch3-AQ 1700 Volt IC.) with AEC-Q100 qualified 1700V SiC MOSFETs as switching devices (February 2022).

[•] Furthermore, GaN company Navitas Semiconductor announced the acquisition of GeneSiC Semiconductor, a SiC pioneer with deep expertise in the design and process of SiC power devices. (August 16, 2022) Like PI, Navitas will incorporate SiC MOSFETs into its system designs. This is likely due to the limitations of GaN HEMTs for operation at Vdss>800V required for automotive systems.

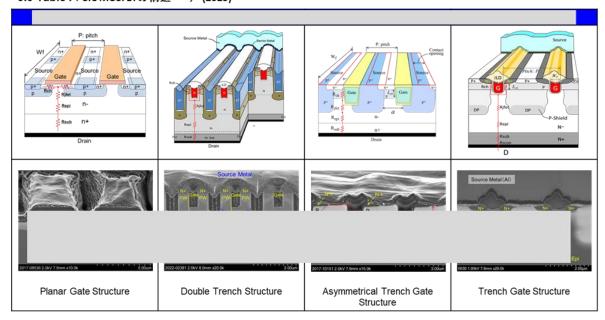


Your most experienced partner in IP protection

Table.1 Outline of FOM and cost/price of evaluated devices

				TOSHIBA	ROHM	WOLFSPEED	INFINEON	STMICRO	ON-Semi	ROHM
	П	Summary of Performance FOMs								
		Process Technology Generation								D
1	72	Specific Effective ON Resistance, RONxA @ Tj= 150°C	mΩ•mm2							
1		Specific Intrinsic ON Resistance, RONxAA @ Tj = 25°C	mΩ•mm2							<u> </u>
FOM		Specific Intrinsic ON Resistance, RONxAA @ Tj = 150°	mΩ•mm2							
	75	QgxRON @Tj=Tjmax	nC•Ω							
	76	Ciss x RON @ Tj=Tjmax	pF•Ω							
J۳	77	Crss x RON @ Tj=Tjmax	pF•Ω							
		Coss x RON @ Tj=Tjmax	pF•Ω							
		Turn-off Switching Energy, Eoff x RON @ Tj = Tjmax	mJ•mΩ							
	80	Turn-on Switching Energy, Eon x RON @ Tj = Tjmax	mJ•mΩ							
	81	Maximum Switching Frequency, fmax	kHz							
\perp	82	Reverse Recovery Charge, Qrr x RON	nC•Ω							
Price	83	Average Selling Price, ASP (Retailer)	\$/unit							
	84	ASP per Ampere (@ Tc=100°C)	\$/A							
st &	85	ASPXRON	\$-Ω							
S		Processed Wafer Cost (Estimated, AVG)	\$/wafer	Γ						

Table 2-1: Current status of SiC device and module manufacturers

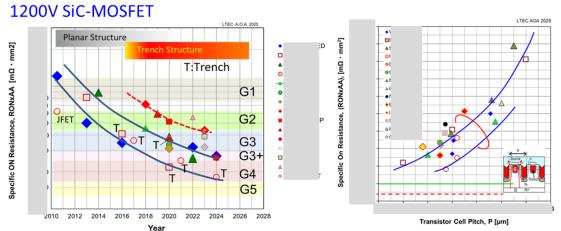


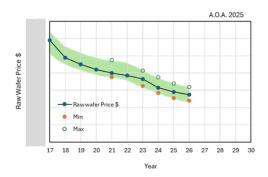
Your most experienced partner in IP protection

5.2 Table 5-1: 1200V SiC MOSFETs benchmark (2025)

	Manufacturer Product	ROHM SCT4062KR	TOSHIBA TW060Z120C	WOLFSPEED E4M0013120K	INFINEON IMBG120R078M2H	ONSEMI NTH4L022N120M3S	STMICRO SCT040W120G3AG	INVENTCHIP IV3Q12013T4Z
	Manufacturer country	JPN	JPN	USA	GERM	USA	ITA	CHN
	Process Generation	4 th	3 rd	4 th	2 nd	3rd M3S	3 rd	3 rd
_	Max Vdd [V]							
Ele	Rated DC Id [A] (per transistor)							
ctric	RON [mΩ]							
Electrical Specs &	Spec Operating Tjmax [°C]							
ppe	Gate Input capacitance CissxRON [pFxΩ]							
cs &	Drain Output capacitance CossxRON [pFxΩ]							
T T	Reverse transfer capacitance $CrssxRON[pFx\Omega]$							
FOMS	Total Switching Energy Loss EswxRON [mJ x mΩ]							
•	Estimated Max Switching Frequency, fsw [kHz]							
	Chip Size, A [mm²]							
	Array Active Area, AA [mm²]							
m	Current Density, Id/AA [A/mm²]							
Structural Features	Specific ON resistance FOM: Effective RON x A [mΩ· mm²] @ Tj=25°C							
ral Fe	Specific ON resistance FOM: Effective RON x A [mΩ· mm²] @ Tj=Tjmax							
atures	Transistor Configuration							
	Transistor Cell pitch, P [μm]							
	Die photograph		0 0	0000			, , ,	S 8 8

5.3 Table 7: SiC MOSFETの構造 *) (2025)

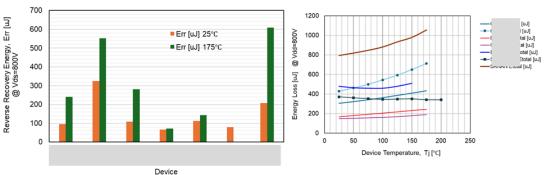




3.1 Technology Trends and Evolution of TEC/C6Fpt ration

Your most experienced partner in IP protection

3.1 Technology Trends and Evolution of SiC MOSFETs (2025)



/ IP Service

4.6 Average Selling Price per Amp

SiC MOSFET Performance Benchmarking

Fig.X-1 Body diode reverse recovery energy loss (Err @ 25°C, 800V) in 1200V, Ron 3 2-40mΩ SiC MOSFETs

