NEW RELEASE

LTEC Corporation

Your most experienced partner in IP protection

パワーMOSFET: Nexperia CCPAK1212,LFPAK88 パッケージ 比較解析レポート

CCPAK1212パッケージ

LFPAK88パッケージ

レポート概要

Nexperiaは新しいCuクリップCCPAK1212パッケージを採用した80V/100Vのパワ-MOSFETを2024年12月にリリースしました。ドレインタブとソースクリップの銅板2枚で パワーMOSFETのシリコンダイを挟んだ構造で、これにより高い電力密度、低いON抵抗、 優れた熱特性を実現していると謳っています。

今回の比較解析レポートでは、従来のLFPAK88との構造的な比較に加え、熱抵抗、 端子インピーダンスなどの観点からCCPAK1212の実力を明らかにした。

製品特徴

型番(CCPAK1212):PSMN1R3-100ASF Vds=100V 1.3mΩ Timax=175°C Foot Print=144mm²

データーシート:

https://assets.nexperia.com/documents/data-sheet/PSMN1R3-100ASF.pdf

・アプリケーション:バッテリー保護、高出力フルブリッジ及びハーフブリッジ構成など

型番(LFPAK88):PSMN2R0-100SSF Vds=100V 2.07mΩ Tjmax=175°C Foot Print=64mm²

データーシート:

https://assets.nexperia.com/documents/data-sheet/PSMN2R0-100SSF.pdf

・アプリケーション:バッテリー保護、AC-DC及びDC-DCにおける同期整流器など

解析内容 レポート価格

パッケージ比較解析レポート: 価格¥400,000 (税別) 発注後1weekで納品

CCPAK1212とLFPAK88の比較

- ・パッケージ断面解析(Cuクリップやダイアタッチの厚み、材料分析)
- ・パッケージ部分開封(Cuクリップレイアウトの詳細調査)

Report No: 24R-1217-1 Release day: 2025.09.19

パッケージ比較レポートからの抜粋

目次

		頁
1.解析結果まとめ	• • •	3
2.CCPAK1212		
2-1.PKG外観	• • •	7
2-2.X線観察	• • •	8
2-3.部分開封	• • •	9
2-4.断面観察	• • •	10
2-4-1.断面1	• • •	11
2-4-2.断面2	• • •	17
3.LFPAK88		
3-1.PKG外観	• • •	22
3-2.X線観察	• • •	23
3-3.部分開封	• • •	24
3-4.断面観察	• • •	25
3-4-1.断面1	• • •	26
3-4-2.断面2		31

パッケージ比較レポートからの抜粋

No		CCPAK1212 PSMN1R3-100ASF	LFPAK88 PSMN2R0-100SSF	備考
8	Vdss [V]	100	100	
9	Ron [mΩ] Typ./Max @ 25°C	1.02/1.3	1.63/2.07	
10	Max @175°C	3	4.8	
11	最大デバイス温度 Tj [°C]	175	175	
12	最大消費電力 Pd [W]	935	341	
13	最大 DC Drain電流 Idmax [A]	355	267	
14	熱抵抗、Rthmb[°C/W] Typ~Max	0.123 ~ 0.16	0.2 ~ 0.44	
15	チップサイズ [mm x mm]			
16	チップ トップメタル膜厚 [μm]			
17	Exposed Thermal Pad 実装面積 [mm x mm]			
18	計算最大許容消費電力 Calc Pd [W]			
19	計算最大許容DC Drain電流 Calc Idmax [A]			
20	端子下絶縁膜厚さ [μm]			
21	Source端子長さ/幅 $[\mu m]$ Source端子厚 $[\mu m]$ Source端子数			
22	端子抵抗(1端子当たり) $[m\Omega]$ 端子抵抗(Total) $[m\Omega]$			
23	端子インダクタンス(1端子当たり)[nH] 端子インダクタンス(Total)[nH]			